Trophy Arki1, Google Cloud Authorized Training Partner of the year 2019 in Latin America

Data Engineering no Google Cloud

Neste curso de quatro dias com instrutor, os participantes terão uma introdução prática sobre como projetar e criar sistemas de processamento de dados no Google Cloud Platform. Por meio de uma combinação de apresentações, demonstrações e laboratórios práticos, os participantes aprenderão como projetar sistemas de processamento de dados, criar canais de dados completos, analisar dados e realizar machine learning. Neste curso, abordamos dados estruturados, não estruturados e de streaming.

Objetivos

Neste curso, os participantes aprenderão as seguintes habilidades:
  • Projetar e criar sistemas de processamento de dados no Google Cloud Platform.
  • Processar dados em lote e streaming, implementando canais de dados de escalonamento automático no Cloud Dataflow.
  • Derivar insights de negócios a partir de conjuntos de dados extremamente grandes usando o Google BigQuery.
  • Treinar, avaliar e prever com modelos de machine learning usando TensorFlow e Cloud ML.
  • Aproveitar dados não estruturados com as APIs do Spark e de machine learning no Cloud Dataproc.
  • Proporcionar insights instantâneos a partir de dados de streaming.

Público-Alvo

Esta aula destina-se a desenvolvedores experientes responsáveis pelo gerenciamento de transformações de Big Data, incluindo:
  • extrair, carregar, transformar, limpar e validar dados;
  • projetar canais e arquiteturas para processamento de dados;
  • criar e manter modelos de machine learning e modelos estatísticos; consultar conjuntos de dados, visualizar resultados de consulta e criar relatórios.

Pré-requisitos

Para aproveitar ao máximo este curso, os participantes precisam atender aos seguintes critérios:
  • Curso Google Cloud Fundamentals: Big Data & Machine Learning concluído OU experiência equivalente
  • Proficiência básica em linguagem de consulta comum, como SQL
  • Experiência com atividades de modelagem de dados, extração, transformação e carga
  • Desenvolvimento de aplicativos com linguagem de programação comum, como Python
  • Familiaridade com machine learning e/ou estatísticas

Duração

32 horas (4 dias)

Investimento

Consulte o valor atualizado e datas das próximas turmas abertas em nossa página de inscrições.
Caso tenha interesse em uma turma fechada para sua empresa, entre em contato conosco.

Resumo do curso

O curso inclui apresentações, demonstrações e laboratórios práticos.
  • Explore the role of a data engineer.
  • Analyze data engineering challenges.
  • Intro to BigQuery.
  • Data Lakes and Data Warehouses.
  • Demo: Federated Queries with BigQuery.
  • Transactional Databases vs Data Warehouses.
  • Website Demo: Finding PII in your dataset with DLP API.
  • Partner effectively with other data teams.
  • Manage data access and governance.
  • Build production-ready pipelines.
  • Review GCP customer case study.
  • Lab: Analyzing Data with BigQuery.
  • Introduction to Data Lakes.
  • Data Storage and ETL options on GCP.
  • Building a Data Lake using Cloud Storage.
  • Optional Demo: Optimizing cost with Google Cloud Storage classes and Cloud Functions.
  • Securing Cloud Storage.
  • Storing All Sorts of Data Types.
  • Video Demo: Running federated queries on Parquet and ORC files in BigQuery.
  • Cloud SQL as a relational Data Lake.
  • Lab: Loading Taxi Data into Cloud SQL.
  • The modern data warehouse.
  • Intro to BigQuery.
  • Demo: Query TB+ of data in seconds.
  • Getting Started.
  • Loading Data.
  • Video Demo: Querying Cloud SQL from BigQuery.
  • Lab: Loading Data into BigQuery.
  • Exploring Schemas.
  • Demo: Exploring BigQuery Public Datasets with SQL using INFORMATION_SCHEMA.
  • Schema Design.
  • Nested and Repeated Fields.
  • Demo: Nested and repeated fields in BigQuery.
  • Lab: Working with JSON and Array data in BigQuery.
  • Optimizing with Partitioning and Clustering.
  • Demo: Partitioned and Clustered Tables in BigQuery.
  • Preview: Transforming Batch and Streaming Data.
  • EL, ELT, ETL.
  • Quality considerations.
  • How to carry out operations in BigQuery.
  • Demo: ELT to improve data quality in BigQuery.
  • Shortcomings.
  • ETL to solve data quality issues.
  • The Hadoop ecosystem.
  • Running Hadoop on Cloud Dataproc.
  • GCS instead of HDFS.
  • Optimizing Dataproc.
  • Lab: Running Apache Spark jobs on Cloud Dataproc.
  • Cloud Dataflow.
  • Why customers value Dataflow.
  • Dataflow Pipelines.
  • Lab: A Simple Dataflow Pipeline (Python/Java).
  • Lab: MapReduce in Dataflow (Python/Java).
  • Lab: Side Inputs (Python/Java).
  • Dataflow Templates.
  • Dataflow SQL.
  • Building Batch Data Pipelines visually with Cloud Data Fusion.
  • Components.
  • UI Overview.
  • Building a Pipeline.
  • Exploring Data using Wrangler.
  • Lab: Building and executing a pipeline graph in Cloud Data Fusion.
  • Orchestrating work between GCP services with Cloud Composer.
  • Apache Airflow Environment.
  • DAGs and Operators.
  • Workflow Scheduling.
  • Optional Long Demo: Event-triggered Loading of data with Cloud Composer, Cloud Functions, Cloud Storage, and BigQuery.
  • Monitoring and Logging.
  • Lab: An Introduction to Cloud Composer.
  • Cloud Pub/Sub.
  • Lab: Publish Streaming Data into Pub/Sub.
  • Cloud Dataflow Streaming Features.
  • Lab: Streaming Data Pipelines.
  • BigQuery Streaming Features.
  • Lab: Streaming Analytics and Dashboards.
  • Cloud Bigtable.
  • Lab: Streaming Data Pipelines into Bigtable.
  • Analytic Window Functions.
  • Using With Clauses.
  • GIS Functions.
  • Demo: Mapping Fastest Growing Zip Codes with BigQuery GeoViz.
  • Performance Considerations.
  • Lab: Optimizing your BigQuery Queries for Performance.
  • Optional Lab: Creating Date-Partitioned Tables in BigQuery.
  • What is AI?.
  • From Ad-hoc Data Analysis to Data Driven Decisions.
  • Options for ML models on GCP.
  • Unstructured Data is Hard.
  • ML APIs for Enriching Data.
  • Lab: Using the Natural Language API to Classify Unstructured Text.
  • Whats a Notebook.
  • BigQuery Magic and Ties to Pandas.
  • Lab: BigQuery in Jupyter Labs on AI Platform.
  • Ways to do ML on GCP.
  • Kubeflow.
  • AI Hub.
  • Lab: Running AI models on Kubeflow.
  • BigQuery ML for Quick Model Building.
  • Demo: Train a model with BigQuery ML to predict NYC taxi fares.
  • Supported Models.
  • Lab Option 1: Predict Bike Trip Duration with a Regression Model in BQML.
  • Lab Option 2: Movie Recommendations in BigQuery ML.
  • Why Auto ML?
  • Auto ML Vision.
  • Auto ML NLP.
  • Auto ML Tables.