Managing Machine Learning Projects with Google Cloud

Los profesionales de negocios en roles no técnicos tienen una oportunidad única de liderar e influir en proyectos de aprendizaje automático. En este curso, explorará el aprendizaje automático sin la jerga técnica. Aprenderá a traducir problemas comerciales en casos de uso personalizados de aprendizaje automático, evaluará cada fase del proyecto y trasladará los requisitos a su equipo técnico.

Público

Esta clase está dirigida a la siguiente audiencia:
  • Enterprise, corporate, or SMB business professionals in non-technical roles.
  • Roles include but are not limited to: business analysts, IT managers, project managers, product managers.
  • For senior VPs and above, Data Driven Transformation with Google Cloud is more suitable.

Prerrequisitos

Para aprovechar al máximo este curso, los participantes deben tener:
  • No prior technical knowledge is required.
  • Saavy about your own business and objectives.
  • Recommended: completing the Business Transformation with Google Cloud course.

Duración

~16 horas (2 días)

Inversión

Si está interesado en esta clase, por favor contáctenos.

Resumen del curso

El curso incluye presentaciones, demostraciones y actividades inmersivas.
  • Overview: what is machine learning?
  • Key terms: Artificial intelligence, machine learning, and deep learning.
  • Real-world examples of machine learning.
  • Overview: five phases in a machine learning project.
  • Phase 1: Assess the ML use case for specificity and difficulty.
  • Brainstorm a minimum of three custom ML use cases.
  • Common ML problem types.
  • Standard algorithms.
  • Data characteristics.
  • Predictive insights and decisions.
  • More real-life ML use cases.
  • Why ML now.
  • Features and labels.
  • Building labeled data sets.
  • Training an ML model.
  • Evaluating an ML model.
  • General best practices.
  • Human bias and ML fairness.
  • Part 1: custom ML use case proposal.
  • Replacing rules with machine learning.
  • Automating business processes with machine learning.
  • Understanding unstructured data with machine learning.
  • Personalizing applications with machine learning.
  • Creative use cases with machine learning.
  • Key considerations.
  • Formulating a data strategy.
  • Developing governance around uses of machine learning.
  • Building successful machine learning teams.
  • Creating a culture of innovation.
  • Summary, presentations, feedback form.