In this course, application developers will learn to design, develop, and deploy apps that seamlessly integrate the components of the Google Cloud ecosystem. Through a combination of presentations, demos, and hands-on labs, participants learn to use pre-trained GCP services and machine learning APIs to create secure, scalable, and intelligent native cloud applications.
Objectives
In this course, participants will learn the following skills:
- Use the best practices for application development.
- Choose the data storage option appropriate for your application data.
- Implement federated identity management.
- Develop application components or lightly coupled microservices.
- Integrate application components and data sources.
- Debug, track and monitor applications.
- Carry out repeatable implementations with containers and implementation services.
- Choose the appropriate application environment.
- Use Google Kubernetes Engine as a performance environment and change to an independent environment solution with Google App Engine Flex.
Audience
This class is intended for the following audience:
- Application developers who want to build cloud-native applications or redesign existing applications that will run on Google Cloud Platform
Prerrequisites
To get the most out of this course, participants should have:
- Finalización de Google Cloud Platform Fundamentals o experiencia equivalente.
- Experiencia práctica de Node.js
- Competencia básica en herramientas de línea de comandos y entornos de sistema operativo Linux.
- Experiencia en operaciones del sistema, incluida la implementación y gestión de aplicaciones, en las instalaciones o en un entorno de nube pública.
Duration
24 hours (3 days)
Investment
Check the next open public class in our enrollment page.
If you are interested in a private training class for your company, contact us.
Course Outline
The course includes presentations, demonstrations, and hands-on labs.
- Code and environment management
- Design and development of secure, scalable, reliable, loosely coupled application components and microservices
- Continuous integration and delivery
- Re-architecting applications for the cloud
- How to set up and use Google Cloud Client Libraries, Google Cloud SDK, and Google Firebase SDK
- Lab: Set up Google Client Libraries, Google Cloud SDK, and Firebase SDK on a Linux instance and set up application credentials
- Overview of options to store application data Use cases for Google Cloud Storage, Google Cloud Datastore, Cloud Bigtable, Google Cloud SQL, and Cloud Spanner
- Best practices related to the following:
- Queries
- Built-in and composite indexes
- Inserting and deleting data (batch operations)
- Transactions
- Error handling
- Bulk-loading data into Cloud Datastore by using Google Cloud Dataflow
- Lab: Store application data in Cloud Datastore
- Operations that can be performed on buckets and objects
- Consistency model
- Error handling
- Naming buckets for static websites and other uses
- Naming objects (from an access distribution perspective)
- Performance considerations
- Setting up and debugging a CORS configuration on a bucket
- Lab: Store files in Cloud Storage
- Cloud Identity and Access Management (IAM) roles and service accounts
- User authentication by using Firebase Authentication
- User authentication and authorization by using Cloud Identity-Aware Proxy
- Lab: Authenticate users by using Firebase Authentication
- Topics, publishers, and subscribers
- Pull and push subscriptions
- Use cases for Cloud Pub/Sub
- Lab: Develop a backend service to process messages in a message queue
- Overview of pre-trained machine learning APIs such as Cloud Vision API and Cloud Natural Language Processing API
- Key concepts such as triggers, background functions, HTTP functions
- Use cases
- Developing and deploying functions
- Logging, error reporting, and monitoring
- Open API deployment configuration
- Lab: Deploy an API for your application
- Creating and storing container images
- Repeatable deployments with deployment configuration and templates
- Lab: Use Deployment Manager to deploy a web application into Google App Engine flexible environment test and production environments
- Considerations for choosing an execution environment for your application or service: Google Compute Engine Kubernetes Engine App Engine flexible environment Cloud Functions Cloud Dataflow
- Google Compute Engine
- Kubernetes Engine App Engine flexible environment Cloud Functions Cloud Dataflow
- Lab: Deploying your application on App Engine flexible environment
- Stackdriver Debugger
- Stackdriver Error Reporting
- Lab: Debugging an application error by using Stackdriver Debugger and Error Reporting
Stackdriver Logging - Key concepts related to Stackdriver Trace and Stackdriver Monitoring. Lab: Use Stackdriver Monitoring and Stackdriver Trace to trace a request across services, observe, and optimize performance